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A method is presented for developing probability density functions for parameters of soil moisture 
relationships of capillary head [h(0)] and hydraulic conductivity [K(0)]. These soil moisture parameters 
are required for the assessment of water flow and solute transport in unsaturated media. The method 
employs a statistical multiple regression equation proposed in the literature for estimating [h(0)] or 
[K(0)] relationships using the soil saturated water content and the percentages of sand and clay. In the 
absence of known statistical distributions for either [h(0)3 or [K(0)] relationships, the method facilitates 
modeling by providing variability estimates that can be used to examine the uncertainty associated with 
water flow or solute transport in unsaturated media. 

INTRODUCTION 

Assessments of groundwater contamination from chemical 
waste disposal or agricultural chemical application invariably 
include evaluation of chemical transport through the unsatu- 
rated zone. For transforming or degrading chemicals, the 
magnitude of contamination depends on the residence time in 
the unsaturated zone. The residence time is dependent on 
chemical and soil characteristics and meteorologic conditions. 
The movement of hazardous wastes or pesticides is inherently 
affected by soil characteristics and the associated spatial varia- 
bility occurring within and among individual waste disposal 
sites or agricultural use areas. 

The soils literature contains numerous assessments docu- 

menting the variability associated with textural and hydraulic 
characteristics of soils [e.g., Jury, 1982; Nielsen et aI., 1973]. 
The coefficient of variation (CV) is often used to represent the 
magnitude of variability. The CV often is found to be highest 
for soil hydraulic properties (e.g., hydraulic conductivity) and 
lowest for textural properties such as bulk density and total 
porosity [e.g., Sharma and Rogowski, 1983; Warrick and Niel- 
sen et aI., 1980]. Variations in soil characteristics can contrib- 
ute considerable uncertainty [e.g., Bresler and Dagan, 1981; 
Jury, 1982] to assessments of solute transport and ground- 
water contamination. 

Traditionally, mathematical models have been used to 
evaluate the uncertainty of predicted chemical movement in 
the unsaturated zone. Cox and Baybutt [1981] have described 
five different modeling methods for conducting uncertainty 
analyses. The choice of any one method depends upon the 
model (or models) selected and analysis objectives. The widely 
used Monte Carlo procedure is suitable for developing uncer- 
tainty analyses of solute transport. These analyses make use of 
randomly generated time series to produce frequency distri- 
butions. Frequency distributions can be used to assess 
groundwater contamination by expressing the uncertainty as a 
probability of occurrence. Such assessments may provide esti- 
mates of various percentiles of the predicted unit solute load- 
ings Iraass per unit area) to groundwater. 
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Monte Carlo numerical simulation methods require prob- 
ability density functions of model input parameters and, in 
some cases, correlations among parameters. In a typical 
Monte Carlo run, for example, values of the various parame- 
ters are generated randomly from hypothesized or inferred 
distributions. Carsel et al. [1988] examined uncertainty of the 
leaching potential of the pesticide aldicarb through a Monte 
Carlo simulation. Estimated distributions of field capacity and 
wilting point were used to characterize input parameters for 
the PRZM model [Carsel et al., 1988]. The potential for 
leaching below selected depths was expressed in the form of 
cumulative probability distributions. 

Monte Carlo techniques that are used to evaluate uncer- 
tainty of solute transport require probability distributions for 
hydraulic parameters that affect water-solute movement in 
soil. Unfortunately, such distributional and correlational in- 
formation often is lacking or is not well-established. However, 
these obstacles have been greatly reduced by development of 
estimation techniques for many of the hydraulic parameters 
required by solute transport models [e.g., RawIs et al., 1982; 
Rawls and Brakensiek, 1985; EI-Kadi, 1981]. Application of 
these estimation methods provides a basis upon which associ- 
ated probability distributions of model input parameters can 
be inferred. 

Fundamental to this approach is the need to establish good 
approximations to empirical distributions for many parame- 
ters in several soil classifications. A family of statistical distri- 
butions can be used advantageously to provide a tommortality 
of form that permits correlations to be incorporated. The 
family of distributions known as the Johnson system [Johnson 
and Kotz, 1970; Johnson, 1987] was used here for this pur- 
pose. This system is rich in variety of form and is especially 
useful for data fitting, particularly where gc.od approximations 
to many empirical distributions are needed. It provides a sig- 
nificant advantage over alternatives by producing, after ap- 
propriate variable transformations, a set of normally distrib- 
uted variables. 

As part of this work, probability density functions were 
developed for soil-saturated hydraulic conductivity and other 
hydraulic parameters. In addition, joint multivariate density 
functions that incorporated correlations among these vari- 
ables were developed for various soil textural classes. Where 
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Term in (KS) e• • (,•-4) In (N-l) ........ 

(Constant) -8.96847 -0,0182482 5.3396738 -0.7842831 
S - 0.0087269 - 0.0177544 

C -0.028212 0.00513488 O, 1845038 - 

O 19.52348 0.02939286 -2.48394546 -1.062498 

S 2 0.00018107 - - -0.00005304 

C 2 -0.0094125 -0.0015395 -0.00213853 -0.00273493 
2 

O s -8.395215 - - 1.11134946 
$C .... 

SO s 0.077718 -0.0010827 -0.0435649 -0.03088295 
CO s - _ -0.61745089 - 

S2C 0.0000173 - -0.00001282 -0.00000235 

C20s 0.02733 0.0030703 0.00895359 0.00798746 
S•Os 0.001434 - -0.0072472 - 
SC= -0.0000035 - 0.0000054 - 

Ce2s - -0.0023584 0.50028060 -0.00674491 
S2O=s -0.00298 - 0,00143598 0.00026587 
C2O= s -0.019492 -0.0018233 -0,00855375 -0.00610522 

.................................... 

S = percent sand (5<S<70) 
C = percent clay (5<C<60) 

0 s = total seturated water content, cm 3 cm-3 
KS = saturated hydraulic conductivity. cm hr -• 
O r -- residual weter content. cm 3 cm -3 
cr = empirical constent, cm -• 
N -- empirical constant 

Fig. 1. 

General regression model: 

S 2 C 2 ß f{S,C,Os) = [b 0 + b,S + b•C + b30,+ bit + b2a + b330 , 

+ b•2SC + bl3SO s + b•COs 

+ bll=S2C + b2•3C•0s + bl13S20s + bl2aSC • 
2 2 

Multiple regression model and coefficients developed by Rawls and Brakensiek [1985] to estimate selected soil 
water retention characteristics. 

input variables are correlated, a properly formulated joint sta- 
tistical distribution permits combinations of values to be more 
appropriately represented, from a frequency standpoint, in the 
simulation. The presence of correlations implies that some 
combinations of values are more probable or less probable 
than they otherwise would be under an assumption of inde- 
pendence. A joint distribution serves to better represent the 
relative frequencies of the variables under study. A multi- 
variate approach also provides for variance reduction and in- 
creased resolution in the sense that the effect of a smaller 

change in the system can be evaluated. El-Kadi [1987] con- 
sidered parameter correlation in relation to infiltration. He 
concluded that when correlation was accommodated, uncer- 
tainty was reduced by one third for the cases considered. 

Correlations among input variables can be easily incorpor- 
ated into a multivariate normal distribution model, provided 
marginal distributions of the individual variables are them- 

selves normally distributed. Generally, however, if the joint 
distribution is not normal, it may be more difficult or impossi- 
ble to include the correlation structure in the distribution 

model. Therefore it was a goal of this research to identify, 
through appropriate choices of variable transformations, the 
associated probability distributions as members of the John- 
son family that best fitted the empirical frequency distri- 
butions. Then, estimates of covariances could be used to pro- 
duce a multivariate normal distribution model that embodied 

all of the distributional information (for these parameters) 
needed for subsequent Monte Carlo modeling or other simu- 
lation studies. 

DATA AND PROCEDURES 

Evaluation of Soil Data 

The complexity and extreme variability of soil at the scale 
of' the primary particle can be bypassed by measuring hydro- 
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Hydraulic conductivity can be represented by 

where K(O) is the hydraulic conductivity for a given water 
content (centimeters per hour) and K s is the saturated hy- 
draulic conductivity (centimeters per hour). Equation (1) con- 
tains four independent parameters (O.•, O r, ot, N) that have 
to be estimated (h is assumed to be positive). Equation (2) 

Develop databa• 
I t;or ea•:h soil texture class 
I • ;;r; d, g clay, porosity) 

Apply Rawls-Brakensiek Eqs. to 
produce KS, Or, •, N values 

logical properties at much larger scales [Sharma and Ro- 
gowski, 1983]. Various combinations are possible for produc- 
ing a sample population of sufficient size to describe the varia- 
bility that may be expected among soils. For example, Baes 
and Sharp [1983] reduced the apparent variability of soil bulk 
density estimates by grouping soils into five textural types (silt 
loams, clays and clay loams, sandy loams, gravelly silt loams, 
and loams) reported by Holtan et al. [1968] and Free et al. 
[1940]. The variability of these characteristics is a product of 
both the inherent spatial variability of the continuum and 
their assignment to categories. 

The soil water characteristic [h(©)] and hydraulic conduc- 
tivity [K(O)] functions are essential to the application of soil 
water flow theory and solute transport. Experimental methods 
[e.g., Hillel, 1982] for determining these curves often are time 
consuming and tedious. Thus simplified approaches for esti- 
mating the hydraulic properties of soils are quite useful, es- 
pecially for nonpoint source problems. Rawls and Brakensiek 
[I985'! have demonstrated a method for computing saturated 
hydraulic conductivity from soil-saturated water content, sand 
content, and clay content. Their analysis also indicated that 
these characteristics can be used to estimate the parameters 
required by several water retention models [e.g., Brooks and 
Corey, 1964; Campbell, 1974; van Genuchten, 1976]. 

The van Genuchten [1976] model is widely used for predict- 
ing soil water content as a function of pressure head. This 
model is generally expressed as 

(O s - Or) 
O = O r -+- [ 1 -+- (•th)ZV] •t (1) 

where 

0 water content' 

O, residual water content; 
O• total saturated water content' 
• empirical constant, cm- •; 
N empirical constant' 
M empirical constant' 
h capillary head, cm. 

Also, where M is related to N as follows' 

M= 1--1IN 

Determine ranges of variation (A,B) 
for each water-retention parameter 
via initial data screening and 
theoretical considerations 

fApply transformations (LN, SB, SU) 
or each variable 

Fit normal distributions for all 
untransformed and transformed 
variables (i.e.• estimate means 
and variances) 

I II II I ß I 

I I I II1! I 
For each variable, choose best 
fit (NO, SB, SU) via 
Kolmogorov-Smirnov GOF statistic 

Fig. 3. 

se]ected fits 

acœeptab]e ? 

Y 

N 
Investigate use of truncated 
distributions 

ii i ii ii i i ii i 

i ii i i ii i t ii ii i i ii iii iiii 

selected (transformed) variables 
i ii iii ii i i i ! ! iii ii 

I 

i • ii ! ii 
i ii i ii i ii ii ii iiiii ii iii i iiii • ! Factor covariance matrix 

............ i iii 

Procedure used for identification, fitting, and estimation of 
parameter distributions. 
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TABLE 1. Descriptive Statistics for Percent Sand and Clay Content 

Sand Clay 

Soil Type 2 s CV n ? s CV n 

Clay* 14.9 10.7 71.6 1177 55.2 10.9 19.7 1177 
Clay loam 29.8 5.9 19.7 1317 32.6 3.7 11.4 1317 
Loam 40.0 6.5 16.3 1991 19.7 5.2 26.3 1991 

Loamy sand 80.9 3.8 4.6 881 6.4 3.2 50.1 881 
Silt 5.8 4.5 77.2 115 9.5 2.7 28.9 115 
Silt loam 16.6 11.7 70.8 3050 18.5 5.9 31.6 3050 

Silty clay 6.1 4.5 73.5 1002 46.3 4.9 10.7 1002 
Silty clay loam 7.6 5.3 70.7 1882 33.2 3.7 11.1 1882 
Sand 92.7 3.7 4.0 803 2.9 2.0 67.1 803 

Sandy clay 47.5 3.9 8.2 74 41.0 4.5 10.9 74 
Sandy clay 54.3 7.3 13.5 610 27.4 4.0 14.6 610 

loam 

Sandy loam 63.4 7.9 12.5 2835 11.1 4.8 43.2 2835 

Here, 2, mean; s, standard deviation; CV, coefficient of variation (percent); and n, sample size. 
*Agricultural soil, less than 60% clay. 

contains one additional parameter, K s , that has to be esti- 
mated. 

A soil database compiled by Carsel et al. [1988] was used 
to obtain bulk density, sand, and clay contents for the 12 Soil 
Conservation Service (SCS) textural classifications including: 
clay, clay loam, silt, silt loam, silty clay, silty clay loam, sand, 
sandy clay, sandy clay loam, and sandy loam. These data were 
obtained from measurements for all soils reported in SCS Soil 
Survey Information Reports. These reports (published by 
State) generally contain static soils data for the predominant 
soil series within a state. A total of 42 books representing 42 
states were used to develop the database. Saturated water 
content was inferred from bulk density [Rawls and Brakensiek, 
1985]. The saturated water contents, the sand contents, and 
the clay contents reported for each of the SCS classifications 
then were used to compute saturated hydraulic conductivity 
(centimeters per hour) and water retention parameters for the 
van Genuchten [1976] model using a multiple regression equa- 
tion developed by Rawls and Brakensiek [1985]. The general 
form of the regression equation (where f denotes any of the 
variables In (Ks), ©r, In (•z-•), or In (N- 1)) and related coef- 
ficients are provided in Figure 1. Their work included testing 

of the regression model using 95 soils with textural classifi- 
cations ranging from clays to sands. Estimated means for final 
infiltration rates of each soil were within one standard devi- 

ation of the observed means. The regression equations were 
developed for natural soils only; modifications would be nec- 
essary for soils having temporal variations such as surface 
crusts, etc. Spatially, the hydraulic parameters are expected to 
vary with the percent sand, clay, and saturated water content. 
By applying the equations to each SCS soil classification with 
large deviations of percent sand, clay, and saturated water 
contents, spatial representation of hydraulic parameters can 
be estimated. 

Statistical Analysis Procedures 

The database of computed saturated hydraulic conduc- 
tivities (Ks) and van Genuchten [1976] water retention param- 
eters (O,, cz, N) for each of the 12 soil textural classifications 
was used as the basis for characterization of probability distri- 
butions for these variables. Descriptive statistics, moments, 
and other distributional characteristics were examined. Em- 

pirical cumulative distribution functions (CDF) were derived 

TABLE 2. Descriptive Statistics for Saturated Water Content 

Saturated Water Content 

Soil Type 2 s CV n 

Clay* 0.38 0.09 24.1 400 
Clay loam 0.41 0.09 22.4 364 
Loam 0.43 0.10 22.1 735 
Loamy sand 0.41 0.09 21.6 315 
Silt 0.46 0.11 17.4 82 
Silt loam 0.45 0.08 18.7 1093 
Silty clay 0.36 0.07 19.6 374 
Silty clay loam 0.43 0.07 17.2 641 
Sand 0.43 0.06 15.1 246 

Sandy clay 0.38 0.05 13.7 46 
Sandy clay 0.39 0.07 17.5 214 

loam 

Sandy loam 0.41 0.09 21.0 1183 

Here, 2, mean; s, standard deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60% clay. 

TABLE 3. Descriptive Statistics for Residual Water Content 

Residual Water Content 0r 

Soil Type 2 s CV n 

Clay* 0.068 0.034 49.9 353 
Clay loam 0.095 0.010 10.1 363 
Loam 0.078 0.013 16.5 735 
Loamy sand 0.057 0.015 25.7 315 
Silt 0.034 0.010 29.8 82 
Silt loam 0.067 0.015 21.6 1093 
Silty clay 0.070 0.023 33.5 371 
Silty clay loam 0.089 0.009 10.9 641 
Sand 0.045 0.010 22.3 246 
Sandy clay 0.100 0.013 12.9 46 
Sandy clay 0.100 0.006 6.0 214 

loam 

Sandy loam 0.065 0.017 26.6 1183 

Here, 2, mean; s, standrad deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60%. 
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TABLE 4. Descriptive Statistics for Hydraulic Conductivity Ks and van Genuchten [1976] Water 
Retention Parameter a 

Hydraulic Conductivity K s, cm 
hr -• a, cm -• 

Soil Type 2 s CV n 2 s CV n 

Clay* 0.20 0.42 210.3 114 0.008 0.012 160.3 400 
Clay loam 0.26 0.70 267.2 345 0.019 0.015 77.9 363 
Loam 1.04 1.82 174.6 735 0.036 0.021 57.1 735 
Loamy sand 14.59 11.36 77.9 315 0.124 0.043 35.2 315 
Silt 0.25 0.33 !29.9 88 0.016 0.007 45.0 82 
Silt loam 0.45 1.23 275.1 1093 0.020 0.012 64.7 1093 
Silty clay 0.02 0.11 453.3 126 0.005 0.005 113.6 126 
Silty clay loam 0.07 0.19 288.7 592 0.010 0.006 61.5 641 
Sand 29.70 15.60 52.4 246 0.145 0.029 20.3 246 
Sandy clay 0.12 0.28 234.1 46 0.027 0.017 61.7 46 
Sandy clay 1.31 2.74 208.6 214 0.059 0.038 64.6 214 

loam 

Sandy loam 4.42 5.63 127.0 1183 0.075 0.037 49.4 1183 

Here, •, mean; s, standard deviation; CV, coefficient of variation (percent); and n, sample size. 
*Agricultural soil, less than 60%. 

for all of these variables, and hypothesized distributions were 
fitted. The first objective was to obtain the set of best fitting 
distributions that would adequately approximate the empiri- 
cal distributions. In each instance, a mathematical transforma- 

tion was sought that would produce a normally distributed 
variable. 

Fitted CDF were selected generally from a class of trans- 
formed normal distributions known as the Johnson system 
[Johnson and Kotz, 1970]. The normal (Gaussian) distribution 
{denoted by NO) also was used in those cases where no trans- 
formation was necessary to achieve normality. The Johnson 
system involves three main distribution types: LN, lognormal; 
$B, log ratio; and SU, hyperbolic arcsine. By definition, a 
random variable that has a lognormal distribution will have a 
normal distribution after applying a logarithmic transforma- 
tion. Similarly, variables following the SB or SU distributions 
also can be transformed to normality, as is described below. 
Oftentimes, the lognormal distribution is inadequate for the 
representation of given empirical data, whereas the SB or SU 
may be well-suited. All of the types of Johnson distributions 
represent transformations of variables that have normal distri- 

butions after the transformations are applied. From an empiri- 
cal standpoint, one would choose the transformation that does 
the best job of producing normally distributed data in any 
given case. The underlying reason why one transformation 
might work better than another in this regard actually is relat- 
ed to certain other characteristics of the distribution. 

The third standard moment (termed skewness, denoted by 
•)•/2) and fourth standard moment (termed kurtosis, denoted 
by//2) of Johnson family distributions can be used to discrimi- 
nate among the three types. Geometrically, the plane defined 
by the set of all values of fl• and/g2 divides into two regions: 
one corresponding to SB distributions, the other correspond- 
ing to SU distributions (see Figure 2). The skewness and kur- 
tosis of the lognormal are functions of the variance (a 2) of the 
log transform of the random variable (i.e., o '2 denotes the vari- 
ance of the normal distribution that obtains for log x when X 
is lognormally distributed). Hence the boundary defined by 
the parametric equations 

/• = (w- 1)(w + 2) 2 r2 -' W4' q- 2W3 + 3w2 -- 3 (3) 

where w = exp (o -2) is the locus of all points in the plane that 
correspond to lognormal distributions. For given skewness 
values, the region where kurtosis is less than that of the log- 
normal is the SB region; the region with greater kurtosis is the 
SU region. The SB region is bounded also by the line 

/52 =/5• + 1 

the limit for all distributions. Each point in the (fl•, f12) plane 
is uniquely associated with a specific Johnson distribution. 
For empirical data, there often will be an SB or an SU distri- 
bution that fits better than the lognormal, a situation en- 
countered when the (/•, ,82) point lies far from the lognormal 
boundary line. As the skewness and kurtosis coefficients ap- 
proach 0 and 3, respectively, the limiting distribution is the 
normal. 

The Johnson transformations may be given as 

œ/v: v = (x) (4) 

SB: Y = In [(X - A)/(B -- X)-I (5) 

SU: Y = sinh- • [U] = In [U + (1 + U2)1/2-[ (6) 

TABLE 5. Descriptive Statistics for van Genuchten [1976] 
Water Retention Model Parameter N 

Soil Type ./' s CV n 

Clay* 1.09 0.09 7.9 400 
Clay loam 1.31 0.09 7.2 364 
Loam 1.56 0.11 7.3 735 

Loamy sand 2.28 0.27 12.0 315 
Silt 1.37 0.05 3.3 82 
Silt loam 1.41 0.12 8.5 1093 

Silty clay 1.09 0.06 5.0 374 
Silty clay loam 1.23 0.06 5.0 641 
Sand 2.68 0.29 20.3 246 

Sandy clay 1.23 0.10 7.9 46 
Sandy clay 1.48 0.13 8.7 214 

loam 

Sandy loam 1.89 0.17 9.2 1183 

Here, X, mean; s, standard deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60%. 
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TABLE 6. Statistical Parameters Used for Distribution Approximation 

Limits of Variation 

Estimated* 

Soil Hydraulic Trans- Standard 
Texture Variable A B formation Mean Deviation D? 

Truncation 
Limits on 

Transformed 
Variable 

S Ks O. 70. SB - 0.394 1.15 0.045 
S 0 r O. O. 1 LN - 3.12 0.224 0.053 
S a 0. 0.25 SB 0.378 0.430 0.050 
S N 1.5 4.0 LN 0.978 '•'0.100 0.063 

SL K s 0. 30. SB 2.49 1.53 0.029 
SL Or 0.00 0.11 SB 0.384 0.700 0.034 
SL rz 0.00 0.25 SB - 0.937 0.764 0.044 
SL N 1.35 3.00 LN 0.634 0.082 0.039 

LS K s O. 51. SB - 1.27 1.40 0.036 
LS 0r 0. 0.11 SB 0.075 0.567 0.043 
LS a 0. 0.25 NO 0.124 0.043 0.027 
LS N 1.35 5.00 SB - 1.11 0.307 0.070 

SIL K s O. 15. LN - 2.19 1.49 0.046 
SIL 0,. 0.00 O. 11 SB 0.478 0.582 0.073 
SIL a 0.00 0.15 LN - 4.10 0.555 0.083 
S!L N I. 2. SB - 0.370 0.526 0.104 

SI Ks O. 2. LN$ - 2.20 0.700 0.168 
SI Or 0.0 0.09 ND$ 0.042 0.015 0.089 
SI a 0.0 0.1 NO 0.017 0.006 0.252 
S! N 1.2 1.6 NO 1.38 0.037 0.184 

C K s O. 5. SB - 5.75 2.33 0.122 
C 0 r 0.0 0.15 SU:i; 0.445 0.282 0.058 
C a 0.0 0.15 SB$ - 4.145 1.293 0.189 
C N 0.9 1.4 LN$ 0.0002 0.118 0.131 
SIC Ks O. 1. LN - 5.69 1.31 0.205 
SIC 0r 0.00 0.14 NO 0.070 0.023 0.058 
SIC 0.00 0.15 LN - 5.66 0.584 0.164 
SIC N 1.0 1.4 SB - 1.28 0.821 0.069 

SC K s 0.0 1.5 LN - 4.04 2.02 0.130 
SC 0 r 0.00 0.12 SB 1.72 0.700 0.078 
SC 0.00 0.15 LN - 3.77 0.563 0.127 
SC N 1.0 1.5 LN 0.202 0.078 0.100 
SICL K s 0.0 3.5 SB - 5.31 1.62 0.049 
SICL 0,. 0.0 0.115 NO 0.088 0.009 0.056 
SICL a 0.0 0.15 SB - 2.75 0.605 0.082 
S!CL N 1.0 1.5 NO 1.23 0.061 0.082 
CL Ks O. 7.5 SB$ - 5.87 2.92 0.058 
CL Or O. 0.13 SU 0.679 0.060 0.061 
CL a 0. 0.15 LN - 4.22 0.72 0.052 
CL N 1.0 1.6 SB 0.132 0.725 0.035 
SCL K s 0. 20. SB - 4.04 1.85 0.047 
SCL 0 r 0.00 0.12 SB• 1.65 0.439 0.077 
SCL a 0.00 0.25 SB - 1.38 0.823 0.048 
SCL N 1. 2. LN 0.388 0.086 0.043 
L K s 0. 15. SB - 3.71 1.78 0.019 
L 0 r 0. 0.12 SB 0.639 0.487 0.064 
L a 0. 0.15 SB - 1.27 0.786 0.039 
L N 1. 2. SU 0.532 0.099 0.036 

- 2.564 - 0.337 
0.013 0.049 

.O065 0.834 
- 5.01 0.912 

0. 0.315 

- 8.92 2 

0.928 2.94 

S, s•ind; SL, sandy loam; LS, loamy sand; SIL, silt loam- SI, silt; C, clay; SIC, silty clay; SC, sandy clay; SICL, silty clay loam; CL, 
clay loam; SCL, sandy clay loam; and L, loam. 

*For distribution of transformed variables. 
'•Kolmogorov-Smirnov goodness-of-fit test statistic. 
:•Truncated form of the distribution. 

where In denotes natural log, X denotes an untransfomed 
variable with limits of variation from A to B (A < X < B), and 
U = (X -- A)/(B -- A). This form of the LN distribution is de- 
fined for all positive values of X, being unbounded above. SB 
is bounded between limits A and B, while SU generally is 
unbounded. The use of .4 and B in the S U transformation is 

for mathematical convenience. In the present application, X 
corresponds to any of the variables K s, 0,, •, N. In each case, 
Y has a normal distribution. 

In using this approach, the limits of variation (A and B) for 

each variable (K s, ©,, •, N) were determined a priori on the 
basis of observed data ranges and theoretical considerations 
and, then, utilized in the three LN-SB-SU transformations 
(equations (4), (5), and (6)). Generally, the third and fourth 
sample moments (skewness and kurtosis) can be used to deter- 
mine which of the three distribution types of the Johnson 
family is an appropriate choice in any given case, as is noted 
above. In this application, however, where only empirical fits 
were needed, it was sufficient and convenient to independently 
fit the normal distribution to the original data set and to the 
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TABLE 7. Correlations Among Transformed Variables 
Presented With the Factored Covariance Matrix 

Ks 0,. • N 

Silt (n = 61) 

Ks 0.535 - 0.002 0.003 0.013 
Or -- 0.204 0.008 0.000 -- 0.015 
a 0.984 - 0.200 0.001 0.014 
N 0.466 - 0.610 0.551 0.013 

Clay (n = 95) 

Ks 1.96 0.070 0.565 0.048 
0r 0.972 0.017 - 0.080 - 0.014 
a 0.948 0.890 0.172 0.002 
N 0.908 0.819 0.910 0.016 

Silty Clay (n = 123) 

Ks 1.25 0.008 0.314 0.367 
0• 0.949 0.003 0.040 - 0.086 
a 0.974 0.964 0.060 0.066 
N 0.908 0.794 0.889 0.131 

Sandy Clay (n = 46) 
Ks 2.02 0.883 0.539 0.076 
0r 0.939 0.324 0.063 0.004 
a 0.957 0.937 0.150 - 0.001 
N 0.972 0.928 0.932 0.018 

Sand (n = 237) 
Ks 1.04 - 0.109 0.328 0.081 
0r - 0.515 0.182 0.258 - 0.047 
a 0.743 0.119 0.143 - 0.011 
N 0.843 - 0.858 0.298 0.017 

Sandy Loam (n = 1145) 
Ks 1.60 - 0.153 0.037 0.211 
0r - 0.273 0.538 0.017 - 0.194 
a 0.856 0.151 0.014 0.019 
N 0.686 - 0.796 0.354 0.108 

Loamy Sand (n = 3!3) 
Ks 1.48 - 0.201 0.037 0.211 
Or -- 0.359 0.522 0.017 -- 0.194 
a 0.986 -- 0.301 0.014 0.019 
N 0.730 - 0.590 0.354 0.108 

Silt Loam (n = 1072) 
Ks 1.478 - 0.201 0.525 0.353 
Or -- 0.359 0.522 0.030 -- 0.170 
a 0.986 - 0.301 0.082 0.234 
N 0.730 - 0.590 0.775 0.158 

Silty Clay Loam (n = 591) 
Ks 1.612 0.066 0.511 0.049 
Or 0.724 0.005 0.048 - 0.009 
a 0.986 0.77 0.073 0.008 
N 0.918 0.549 0.911 0.017 

Clay Loam (N = 328) 
Ks 1.92 0.040 0.5•9 0.542 
Or 0.790 0.031 - 0.062 - 0.154 
a 0.979 0.836 0.106 0.065 
N 0.936 0.577 0.909 0.116 

Sanely Clay Loa•n (n = 212) 
Ks 1.85 0.102 0.784 0.077 
Or 0.261 0.378 0.122 - 0.031 
• 0.952 0.392 0.220 - 0.008 
N 0.909 - 0.113 0.787 0.016 

Loam (n = 664) 
Ks 1.41 - 0.100 0.611 0.055 
0r 0.204 0.478 0.073 - 0.055 
a 0.982 - 0.086 0.093 0.026 
N 0.632 - 0.748 0.591 0.029 

Entries in the lower triangular portion of the matrix are sample 
Pearson product-moment correlations. The diagonal and upper 
triangular entries form the triangular Cholesky decomposition of the 
sample covariance matrix. N, sample size. 

three sets generated by applying the Johnson transformations 
on a given variable. In each case, the first two moments (i.e., 
mean and variance) of the transformed values were used to 
estimate the corresponding parameters of a normal distri- 
bution. An objective measure of goodness of fit, the 
Kolmogorov-Smirnov (K-S) D statistic, then was used to 
select the best fitting distribution from among the four candi- 
dates (NO, LN, $B, $U). The K-$ D statistic is defined basi- 
cally as the maximum observed deviation between an empiri- 
cal CDF and a fitted CDF, so that the smallest observed value 
of D signified the most appropriate transformation in any 
given case. 

In following this procedure, a fitted normal or Johnson dis- 
tribution was derived for each variable within each soil tex- 

tural class. A knowledge of the type of transformation, the 
estimated mean and variance of the associated normal distri- 

bution, and the limits of variation were sufficient to define 
completely the fitted distribution of any given variable. 

Data peculiarities, such as outliers, required that the fits be 
carefully scrutinized with respect to proper estimation of pa- 
rameters. For the most part, maximum likelihood estimates of 
the mean and variance were computed on the basis of com- 
plete data sets, although in a few cases trimmed estimates were 
utilized. The goodness-of-fit criterion was based consistently 
on untrimmed data sets to ensure objectivity. That is, in some 
instances, outlying values were not used in estimating the 
mean and variance, but they were included for goodness-of-fit 
calculations. 

If a case exhibited characteristics that usually are associated 
with truncated distributions to such a degree that a nontrun- 
cated fit was considered unacceptable, efforts were made to 
use truncated Johnson system distributions. In these situ- 
ations• maximum likelihood estimates of the mean and vari- 

ance of the normal parent distribution for the transformed 
variable were obtained using methods appropriate for the 
doubly truncated normal [Johnson and Kotz, 19701. That is, a 
truncated normal distribution was fitted to the transformed 

data in these cases. The density function of a truncated normal 
distribution can be given as 

fr(x) = f(x)/[F(b) - F(a)] 

= o'= •4' [(x - u)/a]ep•_•- • 

where 

a _< x < b (7) 

f(x) = a- •(2z•)- •/2 exp {- (1/2)[-(x - ,u)/a-i 2} (8) 

is the density function of the nontruncated normal parent dis- 
tribution having mean #, and variance a 2 and associated CDF 
F(x), where 

OS(z) = (2•)-•/2 exp (--z2/2) (9) 

is the standard normal density with associated CDF (I)(z) and 
where 

%_•-• = •[(t, -/•)/a] - •[(a - •,)/•3 (•0) 

The limits of truncation are a and b. The first two moments of 
the truncated normal distribution are related mathematically 
to the moments of the nontruncated parent distribution 
through two nonlinear equations. The expressions for the ex- 
pected value and variance of the truncated distribution are 

/•r =/• + o(,5• - 4,•)c•_• -• (• 1) 

crr' = 

(12) 
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Transformation of Four Soil Textures (Standard Units) 
Fig. 4. Observed and predicted cumulative distributions for saturated hydraulic conductivity K s and van Genuchten 

[1976] model parameters ©,, •, and N for sand, sandy loam, loamy sand, and silty loam soils. NO, normal; LN, 
lognormal; SU, hyperbolic arcsine; SB, log ratio. 

where z,= (a-#)/a, z b =(b- l•)/a, 4>, = (p(z,), and qbb= 
4>(zb). By equating these nonlinear expressions to sample mo- 
ments obtained from the data and, then, solving numerically, 
estimates of the parameters # and rr of the parent distribution 
were determined. This estimation procedure was used only in 
those cases where truncated normal distributions were needed. 

After choosing the best fitting distribution, sample covari- 
ances (and correlations) among the selected transformed vari- 
ables were computed. These served to estimate the covariances 
needed by a joint multivariate distribution model. Since the 
Johnson system provides a mechanism for developing, after 
transformations, a set of normally distributed variables, a mul- 
tivariate normal distribution model was selected to represent 
the joint probability density for the transformed variables. In 
this manner, the estimated covariance structure was incorpor- 
ated for future use in Monte Carlo simulations. (A one- 
dimensional finite element solute transport model with a 
Monte Carlo preprocessor is currently being developed.) This 
identification fitting estimation procedure is summarized in 
Figure 3. It depicts the steps of determining appropriate trans- 
formations and corresponding estimates of distribution means, 
variances, and covariances. 

The multivariate normal distribution is parameterized in 
terms of marginal distribution means and variances and pair- 

wise covariances in the form of a covariance matrix. The mul- 

tivariate normal density function is given by 

f(z; IX, I;)=(2•)-•/2 II;I - •/2 exp {-(1/2Xz - Ix)'I:-•(z - IX)} 

-- oo < z• < oo i = 1, 2, ---, p (13) 

where z represents a vector of p random variables with mean 
vector IX and variance-covariance matrix •, and Jt;J denotes 
the determinant of I2. Random deviates from a correlated mul- 

tivariate normal distribution can be produced by first gener- 
ating a vector z of independent standard normal deviates and 
then applying a linear transformation of the form 

y = IX + T'z 04/ 

where Ix is the desired vector of means and T' is the transpose 
of an upper triangular matrix derived from the factored form 
of the symmetric covariance matrix Z; --- T'T. The existence of 
this factorization requires that the covariance matrix be posi- 
tive definite. 

Within each soil textural class, after transformations were 
selected and distributions were fitted for all variables, sample 
Pearson product-moment correlations and covariances were 
calculated for the transformed variables, as is described above, 
These estimates were based on sets of complete observations 
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Transformation of Four Soil Textures (Standard Units) 
Fig. 5. Observed and predicted cumulative distributions for saturated hydraulic conductivity K s and van Genuchten 

[!976] model parameters O,, •, and N for silty clay loam, clay loam, sandy clay loam, and loam soils. NO, normal- LN, 
lognormal' SU, hyperbolic arcsine' $B, log ratio. Asterisks indicate the truncated form. 

in which all variables had nonmissing values. This approach 
utilized somewhat less information when compared to individ- 
ual pairwise estimates, but it guaranteed that the covariance 
matrices would be positive definite and thus could be factored. 
The Cholesky decomposition algorithm [Kennedy and Gentle, 
!980] was used to factor the estimated covariance matrices. 

RESULTS AND DISCUSSION 

Descriptive statistics for saturated water, sand, and clay 
contents, are provided in Tables 1 and 2. Estimated saturated 
hydraulic conductivity K s and van Genuchten [1976] water 
retention parameters (O,, 0•, N) are provided in Tables 3-5. 

The CV for saturated water content ©s was less than 25% 
for all soil types. These values are consistent with those re- 
ported elsewhere [e.g., Jury, 1985]; therefore variability for 
saturated water content is minimal. The CV for percent sand 
was greater than 50% for clay, silt, silt loam, silty clay, and 
silty clay loam soils and less than 20% for clay loam, loam, 
loamy sand, sand, sandy clay, sand clay loam, and sandy 
loams. The CV for clay content was greater than 40% for 
loamy sand, sand, and sandy loam soils and less than 35% for 
clay, clay loam, loam, silt, silt loam, silty clay, silty clay loam, 
and sand clays. Generally, the CV for simulated values of 
residual water content O, and the van Genuchten [1976] 

model parameter N were less than 30 and 20%, respectively. 
Higher CV were observed for the van Genuchten [1976] model 
parameter value oz. The CV was generally greater than 35% 
for •z (CV for sand was 20.3). The CV for simulated saturated 
hydraulic conductivity K s ranged from 453.3 for silty clays to 
52.4 for sands. Common agricultural soils such as silt loams, 
loamy sands, loams, and sandy loams exhibited C¾ of 174.6, 
77.9, 275.1, and 127.0, respectively. These values compare fa- 
vorably to measured C¾ for loamy sands, sandy loams, sands, 
silty clays, and silty clay loams of 69-105, 178-190, 69, 92-320, 
and 48-118, respectively [Smith et al., 1987]. Sensitivity of the 
characteristic curve (equation (1)) as indicated by the CV 
would appear to be generally related to 0•. 

The results for hydraulic conductivity and van Genuchten 
[1976] model parameters indicated that considerable differ- 
ences are expected for any simulation of solute movement in 
the unsaturated zone. It follows that uncertainty estimates 
should be incorporated into any associated modeling study. 

Estimates of the distribution mean and standard deviation 

for appropriately transformed variables, limits of variation for 
the original variables, and values of the K-S goodness-of-fit 
statistic D (maximum absolute deviation between the empiri- 
cal and fitted CDF) are displayed in Table 6. In cases where 
trun•:ated distributions were used, the truncation limits also 
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Fig. 6. Observed and predicted cumulative distributions for saturated hydraulic conductivity K s and van Genuchten 

E1976-] model parameters Or, =, and N for silt, clay, silty clay, and sandy clay soils. NO, normal; LN, lognormal; SO, 
hyperbolic arcsine' $B, log ratio. Asterisks indicate the truncated form. 

are shown. Correlations among transformed variables are 
given in Table 7; these appear (in boldface) as the six entries 
below the matrix diagonal in each case. The entries on and 
above the diagonal comprise the upper triangular matrix that 
forms a factor of the estimated covariance matrix. 

Figures 4-6 display plots of the empirical and fitted CDF 
for transformed values of saturated hydraulic conductivity and 
van Genuchten [1976] model parameters for each of the 12 soil 
textural classes. In each case, standardized (zero mean and 
unit variance) scaling of the transformed variable is utilized 
for purposes of uniform presentation. 

The fitted CDF are considered acceptable for simulation 
because they are based on available data and because the 
absolute errors between observed and predicted CDF are not 
expected to be distinguishable when using solute transport 
models. The present approach met the primary objective of 
obtaining good approximations for most of the underlying 
distributions. In addition, the fitted distributions had a 
smoothing effect in cases where data gaps may have occurred 
(e.g., silt, clay, and sandy clay soils). This offers an implicit 
advantage for data representation. 

Very few of the data sets could be adequately described by 
the normal distribution without using one of the Johnson 
transformations. The SCS textural triangle system used for 
classifying soils is thought to have contributed to the existence 
of truncated forms and of forms having properties un- 

characteristic of the normal distribution. Classification 

schemes and/or restrictions that weight results could have 
produced the results observed for these soils. Notably, many 
data sets were significantly better described by the SB and SU 
distributions rather than the more commonly used lognormal, 
although the lognormal was selected in about one third of the 
cases. Truncated distributions were used in 7 of the 48 cases; 

the resulting fits were significantly improved in each of these. 
In most cases, correlations were significant for the van Ge- 

nuchten [1976] model parameters. For example, correlations 
generally were greater than 0.70 for between K s and ct, and 
between K s and N. The implication is that an assumption of 
independence in a Monte Carlo simulation is not plausible. 
(Such an assumption would add considerable white noise to 
the results, thus limiting their utility.) 

The Monte Carlo implementation of these results would 
require that multivariate normal deviates be generated with 
means, variances, and covariances as previously estimated. 
These random values then would be inverse-transformed into 

the original scaling used for the hydraulic parameters. Equa- 
tions (4)-(6) may be inverted mathematically to produce 

LN' X = exp (Y) (15) 

SB' X = [B exp (Y) + A]/[1 + exp (Y)] (16) 

SU' X = A + (B -- A)[exp (Y) -- exp (-- Y)]/2 (17) 
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INPUT.' timits of variation {A B] • 
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i ! iiii iiiiii • i 11111 ill i 
Apply transformations to obtoin correlated ivoiot, + T'z. 

ly generated vector would be retained only when all range 
constraints are satisfied. 

Figure 7 illustrates Monte Carlo implementation using the 
multivariate normal-Johnson transformation approach. The 
data provided in Tables 6 and 7 can be used to select and 
parameterize the distributions for K s, ©,, c•, and N in any 
given soil textural class. The factored covariance matrices and 
transformed variable means can be used to generate sets of 
correlated normal random deviates. These values would then 

be translated mathematically, as in (15)--(17), depending on the 
fitted distributions, to produce random values for the soil 
water retention parameters. 

Example 

For the silt loam soil data, the limits of variation, variable 
transformations, and estimates of the transformed variable 
means are obtained from Table 6, and the factored covariance 
matrix is read from Table 7: 

all component 
values wi thin 

truncated limi 

Apply inverse transformations 

Are 
all values 

wi thin (A, B) 
limits ? 

Output random vector for simulation use 

Fig. 7. Procedure for implementing Monte Carlo numerical simu- 
!ation using the multivariate normal Johnson transformation ap- 
proach. 

where Y represents a normally distributed variate with pre- 
scribed mean and variance. Of course, values of X generated 
in this manner generally must be checked to ensure that they 
are within the specified acceptable ranges (A to B) after trans- 
forming to original scales. In addition, whenever truncated 
normal distributions are involved, each element of the multi- 
variate normal random deviate that is associated with a trun- 
cated distribution must be checked for range validity prior to 
inverse transformation. This is necessary, since the multi- 
variate normal distribution model is parameterized in terms of 
the parent distributions of the truncated variables. A random- 

Ks: y• = In (Ks) A = 0, B -- 15.00, LN 

O,: Y2 = in [O,/(0.11 -- ©,)] A = 0, B --- 0.1 I, SB 

cz: Y3 = In (cx) A = 0, B = 0.15, LN 

N: y4 = In E(N- 1)/(2- N)] A = 1, B = 2.00, SB 

[--2.187] 
u= I 0'4781 

|-4.o991 ' 
L-0.370_1 

.475 --0.201 0.525 0.353 

T- 0.522 0.030 --0.170 
0 0.082 0.234 

0 0 0.158. 

Recall that the transformations were selected so that data 

associated with each y• were approximately normally distrib- 
uted. The vector of means u consists of the estimated means 

for the distributions of the transformed variables y•, Y2, Y3, 
and y4. The estimated covariance matrix for the y• may be 
calculated from T as 

S = T'T = 

2.176 --0.296 0.774 0.521 

0.296 0.313 --0.090 --0.160 

0.774 -0.090 0.283 0.199 
0.521 --0.160 0.199 0.233 

relation matrix, as given in Table 7, can be computed as 
R = DSD, where D is a diagonal matrix with elements equal 
to the reciprocals of the square roots of the diagonal elements 
of S. 

To illustrate how a random vector of values (K s, ©r, o:, N) is 
produced, suppose that z'= (--0.592, --0.009, 1.011, --1.649) 
is a vector of independent standard normal deviates. A new 
random vector y is derived by application of the transforma- 
tion y = u + T'z: 

-2.187] 
| ø-4781 

Y= /_4.099• + 
L-0.,0j 

1.475 0 0 0 

0.201 0.522 0 0 

0.525 0.030 0.082 0 

0.353 --0.170 0.234 0.158 

ß ø'øø91 = / 0.592 
I I-4.327 

1.649_] L-0.602 



766 CARSEL ANI) PARRISH: SOIL WATER RETENTION CHARACTERISTICS 

' BASIC PROGRAIl TO GENERATE RANDOH VALUES FOR SOIL PARARETERS 

' (KS, QR, ALPHA, AND N) USING SILT LOAM INPUT DATA 
i 

i 

DIM T( 10), AMU(4) ,X(4 ) ,Y(4) ,Z(4) ,A(4) , B (4), TR$(4), TA(4) , TB(4) 
! 

, ............................................................. 

'Load means, variable limits, transformations, and truncated 
' limits, if any. [Note: Code truncated distributions as 
' "LN*" "SB*", "SU*" or "NO*" ] 
, ............... . ............................................. 

! 

DATA -;).187, 0.0, 15.0, "LN", 0., 
DATA 0./+78, 0.0, 0.11, "SB", 0., O. 
DATA -/+.099, 0.0, 0.15, "'LN", 0., O. 
DATA -0.370, 1.0, ;).00, "SB", 0., O. 
i 

FOP. I=1 TO /+ 

READ AHU(:I), A½I), B(I), TR$(:I), TA(:I), 
NEXT ] 

i 

! ............................................................. 

'Load factored covar•ance matrix T 
i ............................................................. 

i 

DATA 1./+7•/+, -0.2006, 0.52/+5, 0.3526 
DATA 0.5715, 0.0300, -0.1696 
DATA 0.0820, 0. 
DATA 0.1 
i 

FOR I=1 TO 10 

READ T(I ) 
NEXT I 

i 

i ............................................................. 

'Get nLmbor to 9erierate and open output f• Le 
i ............................................................. 

i 

INPUT "Enter nLa•ber of vectors to õerierate . . . ", 
INPUT "Enter random r•Jmber seed ........ ", [SEED 
i 

RANDOM ]ZE ISEED 
i 

OPEN "MCARLO.SIL" FOR OUTPUT AS 1 
i 

i ............................................................. 

'Begin Loop 
, ............................................................. 

I 

FOR L=I TO N 
i 

! ............................................................. 

'Generate independent normat random deviates 
I ............................................................. 

! 

100 FOR J=l TO /, 
Z(:J) = -6.0 
FOR K=I TO 12 

Z(J) = Z(:J) + RND 'RND = uniform (0,1) deviate 
NEXT K 

NEXT J 

Y(1) = AMU(1) + T(1)*Z(1) 
Y(2) = AMU(2) + T(2)*Z(1) + T(5)*Z(2) 
Y(3) = AMU(3) + T(3)*Z(1) + T(6)*Z(2) + T(8)*Z(3) 
Y(4) = AMU(4) + T(4)*Z(1) + T(?)*Z(Z) + T(9)*Z(3) + T(10)*Z(4) 
, 

, ................................................ oo 

'Check limits for any tr•cated distri•ti•s 

[F M[D$(TR$(1)•3,1)="*" THEN -- 
•F Y(1)<TA(1) OR Y(1)>TB(1) THEN 100 

IF M•D$(TR$(2),3,1)="*" THEN 
IF Y(2)<TA(2) OR Y(2)>TB(2) THEN 100 

[F MID$(TR$(3),3•I)="*" THEN 
[F Y(3)<TA(3) OR Y(3)>TB(3) THEN 100 

[F M[D$(TR$(4),3,1)="*" THEN -- 

IF Y(4)<TA(4) OR Y(4)>TB(4) THEN 100 

i ............................................................. 

'•nverse transform correlated normals to get random devfat• 
' for KS• QR, ALPHA• N 
i ............................................................. 
i 

FOR J=l TO 4 

U = EXP(Y(J)) 
IF MID$(TR$(J),I•2) = "LN" THEN 

X(J) = U ELSE 
[F M[D$(TR$(J)•I•2) = "SB" THEN 

X(J) = (B(J)*U+A(J))/(1.0+U) ELSE 
•F MID$(TR$(J),I,2) = "SU" THEN -- 

X(J) = A(J) + 0.5*(B(J)-A(J))*(U-!.0/U) ELSE 
X(J) = Y(J) 

NEXT J 
i 

i ............................................................. 

'Ensure that values are w•thin defin• limits 
i ............................................................. 

]F X(1)<A(1) OR X(1)>B(1) THEN 100 
•F X(2)<A(2) OR X(2)>B(2) THEN 100 
•F X(3)<A(3) OR X(3)>B(3) THEN 100 
IF X(4)<A(4) OR X(4)>B(4) THEN 100 

i ............................................................. 

'Out•t ra• vector (KS, QR, ALPHA, N) a• close 
i ............................................................. 

PRINT •1, X(1); X(2); X(3); X(4) 
i 

NEXT L 

• ................................................. . 

'Finish 

i 

CLOSE •1 
END 
i 

i ............................................................. 

Fig. 8. BASIC program to generate random values for soil parameters using silt loam input data. 

That is, y is a random vector from a multivariate normal 
distribution with mean u and variance-covariance matrix S. 

Inverse transformations (equations (15)--(17)) must be applied 
to y, as follows, in order to obtain the final random values for 
the original variables' 

K s = exp (y•) = exp (--3.060) = 0.047 

©, = lB exp (Y2) Jr' A]/[1 + exp 

= [0.11 exp (0.592)]/[1 + exp (0.592)] = 0.071 

c• = exp (Y3) = exp (--4.327) = 0.013 

N = lB exp (Y,0 + ,4]/[! + exp (y•)] 

= [2 exp (--0.602) + 1]/[1 + exp (--0.602)] = 1.354 

These steps have been programmed as illustrated in Figure 
8. By substituting appropriate values in the input data state- 
ments, any of the 12 soil textural classes may be represented. 
For the case of silt loam, the program was used to generate 
1000 sets of values for Ks, 0•, o•, and N. These data then were 
examined for agreement with the original observed data. 
These have been plotted in the form of double-bar histograms 
(Figures 9-12) showing both sets of relative frequencies [or 
each variable. Table 8 displays the computed percentiles of 
both the generated values and the observed data for compari- 
son. 

CONCLUSIONS 

A method was presented for developing probability density 
functions for several water retention characteristics for 12 soil 
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Fig. 9. 
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Histogram of randomly generated saturated hydraulic conductivity K s values and original observed data. 
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Histogram of randomly generated residual water content O, values and original observed data. 

Fig. 11. 
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Histogram of randomly generated van Genuchten [1976] water retention model parameter • values and original 
observed data. 
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Fig. 12. Histogram of randomly generated van Genuchten [1976] water retention model parameter N values and original 
observed data. 

TABLE 8. Percentiles of Generated and Observed Data, Silt Loam 

Percentile 
Level 

Ks 0,. a N 

Generated Observed Generated Observed Generated Observed Generated Observed 

1% 0.004 0.001 0.003 0.002 0.005 0.004 1.188 1.24 
5% 0.009 0.011 0.043 0.040 0.007 0.008 1.238 1.27 
10% 0.016 0.019 0.048 0.048 0.008 0.009 1.268 1.28 
25% 0.044 0.040 0.057 0.059 0.012 0.011 1.331 1.32 
50% 0.115 0.096 0.068 0.070 0.017 0.015 1.412 1.38 
75% 0.316 0.310 0.078 0.078 0.024 0.025 1.495 1.49 
90% 0.778 0.818 0.084 0.083 0.034 0.036 1.570 1.57 
95% 1.233 1.574 0.088 0.086 0.040 0.043 1.612 1.63 
99% 2.916 5.122 0.094 0.091 0.053 0.060 1.680 1.76 
Minimum 0.001 0.000 0.018 0.014 0.003 0.000 1.102 1.11 
Maximum 6.045 7.072 0.099 0.098 0.0•58 0.068 1.797 1.95 

Observed, n = 1092; generated, n = 1000. 

texture classifications. Joint multivariate distributions that in- 

corporated correlations among hydraulic variables were devel- 
oped for each class using an extensive soils database. The 
marginal distributions used in fitting these empirical data were 
selected as members of a family of distributions. Application 
of appropriate transformations resulted in variables that were 
approximately normally distributed, so that a multivariate 
normal distribution could be used to represent each of the 
joint density functions. 
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